
_USAISEC
US Army Information Systems Engineering Conunand
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIEN('ES

A Perspective of Software
N Reuse

(ASQBG-I-89-025)

April 1989

DTIC
ELECTE
JANtl 1 8 9

AIRMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

App "'-w"mI 90 01 17 013

This research was performed as an in-house project at the Army Institute for Research in
Management Information, Communications, and Computer Sciences (AIRMICS), the
RDTE organization of the Army's Information Systems Engineering Command (ISEC).
This work was completed by Dr. Jim Hooper, University of Alabama at Huntsville, a
visiting scientist under the Army's Scientific Service Program who was resident at
AIRMICS from September 1988 to January 1989. Material included herein is approved
for public release, distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Aoeossiou For

xIUS GA&I
DTIC TAB 0
unannomibed 0
Justiflatlo-

AveLlabillty Oodles

___________________Net_ Spe ia

Glenn Racine, Chief John R. Mitchell
Computer and Information Director
Systems Division AIRMICS

A PERSPECTIVE OF SOFTWARE REUSE

by

James W. Hooper
Professor of Computer Science

The University of Alabama in Huntsville
Huntsville, Alabama 35899

for

U.S. Army Institute for Research In Management
Information, Communications, and Computer Science

(AIRMICS)

March 1989

Contract No. DAALO3-86-D-0001
Delivery Order 1144

Scientific Services Program

The views, opinions, and/or findings contained in
this report are those of the author and should
not be construed as an official Department of the
Army position, policy, or decision, unless so
designated by other documentation.

TABLE OF CONTENTS

Page

PREFACE ii

1. INTRODUCTION

2. FACETS OF SOFTWARE REUSE 6

2.1 Definitions of Reuse/Reusability 7

2.2 Barriers and Incentives 8

2.3 Abstraction Levels of Reuse 12

2.4 Mechanisms for Reusable Code 15

2.5 Mechanisms for Reuse Repository Operation . 17
2.5.1 Classifying and Retaining Components 17
2.5.2 Searching and Retrieving 21
2.5.3 Understanding Identified Components 24
2.5.4 Adapting Components 29
2.5.5 Composing Components 33

2.6 Identifying Reusable Components 36

2.7 Software Development Incorporating Reuse . . . 42

3. CONCLUSIONS AND RECOMMENDATIONS 47

3.1 Conclusions 47

3.2 Recommendations 50

REFERENCES 55

ii

PREFACE

The work underlying this report was conducted during a

period of residence at AIRMICS (September 1988 to February

1989) as part of a year of sabbatical leave. AIRMICS is

very active in software reuse research, and my stay there

was very pleasant and technically rewarding. I thank Glenn

Racine, COR of this effort, for his cooperation and eupport,

as well as John Mitchell, Director of AIRMICS. My thanks

also to Dan Hocking for numerous worthwhile discussions on

software reuse, and the other people at AIRMICS for helping

me to "feel at home".

iii

1. INTRODUCTION

- In 1980 the U.S. Department of Defense (DoD) spent over

$3 billion on software; by 1990, their expenses are expected

to grow to $30 billion per year- (Horowitz and Munson 1984).

And even though expenditures are escalating, productivity is

falling behind the demand for new software. The same trends

are perceivable throughout the software industry--in private

companies and government agencies. Jones (1984) estimates

that of all the code written in 1983, probably less than 15

percent is unique, novel, and specific to individual

applications. And, estimates are that on the average only

about five percent of code is reused., (Frakes and Nejmeh

1987, quoting DeMarco).

")Thus we see an obvious candidate area for increasing

productivity and reducing cost--that is, to reuse existing

software products to achieve all or part of the redundant 85

percent of the development. Even a one percent gain,

relative to DoD's projected $30 billion, could save $300

million!- As Standish (1984) observed, "software reuse has

the same advantage as theft over honest toil". -In addition

to increases in productivity and reduction in costs,

software quality should increase due to the greater use and

testing of individual components, with the resulting

isolation and correction of any problems discovered.(b.&A

Some software reuse has occurred for many years, of

course, beginning with libraries of mathematical

subroutines, and now including operating systems, language

processors, report generators, compiler generators, fourth-

generation languages, and many application-specific

packages. To achieve the needed benefits, however, software

reuse must be expanded much further.

Both in the U.S. and abroad (especially Europe and

Japan), a great deal of research is underway, seeking

effective means to achieve software reuse. Some current

research projects are CAMP (Common Ada Missile

Packages)(Anderson and McNicholl 1985, McNicholl et al

1986), funded by the DoD STARS (Software Technology for

Adaptable, Reliable Systems) program. The federally-funded

Software Engineering Institute (SEI) at Carnegie-Mellon

University in Pittsburgh, is conducting reuse research based

on the CAMP reusable parts, as is U.S. Army CECOM's Center

for Software Engineering. U.S. Army AIRMICS has a broadly-

based reuse research program underway, with the support of

Martin Marietta Energy Systems. A number of universities are

participating in the project (entitled the Ada Reuse and

Metrics Project), and the research is focusing on various

facets of reuse relating to the software life cycle (Hocking

1988). The RAPID Center project is being conducted by

SofTech for the U.S. Army Information Systems Engineering

Command, emphasizing the identification and retrieval of

reusable Ada software components (Guerrieri 1988). The U.S.

Army Strategic Defense Command has funded reuse efforts--

e.g., that reported by Asdjodi (1988). The Software

2

Productivity Consortium (Reston, Virginia) conducts reuse

research (Pyster and Barnes 1987), as does the

Microelectronics and Computer Technology Corporation (MCC,

Austin, Texas; e.g., Biggerstaff and Richter 1987). A

summary of current reuse projects, including some of those

mentioned above and others, may be found in Lesslie et al

1988.

The DoD Ada Software Repository was established in 1984

to promote the exchange and use of public-domain Ada

programs and tools, and to promote Ada education by

providing several working examples of programs in source

code form to study and modify. The Repository contains

source code exceeding 20 MB in size. Conn (1986) provides

an overview of the DoD Ada Software Repository, and explains

how to obtain access to available services.

AdaNET is a government-sponsored information service,

established in October 1988 to facilitate the transfer of

federally developed software engineering and Ada technology

to the private sector. It is operated by MountainNet,

Inc., Dellslow, West Virginia, and sponsored by NASA

Technology Utilization Division, DoD Ada Joint Program

Office (AJPO), and Department of Commerce Office of

Productivity, Technology and Innovation (OPTI). AdaNET

offers 24 hour-per-day on-line computer access to

information about Ada software, bibliographies, conferences

and seminars, education and training, news events, products,

reference materials and standards. Interested organizations

3

and individuals are invited by MountainNet to call them for

detailed information, including how to apply for an AdaNET

Electronic Mail Account (call (304) 296-1458)).

Significant projects are underway in the United

Kingdom, as evidenced by the special section on software

reuse in the September 1988 issue of the Software

Engineering Journal (Hall 1988a); this issue contains some

excellent research papers. A recent paper on the Japanese

"software factory" approach is Fujino 1987. Many

conferences and workshops dealing with software reuse are

being held--they are reflected in the references in this

report; and refereed journal articles on reuse are becoming

more numerous. Progress is being made as will be apparent

from the subsequent technical discussions in this report,

and the papers appearing are becoming more substantive.

There aren't yet as many practical "success stories" as we

could wish, but some are occurring. Examples are the

Magnavox effort reported by Carstensen (1987) (discussed

briefly in section 2.2 of this report), and Raytheon's

reuse efforts in business data processing applications

(Lanergan and Grasso 1984); Raytheon expects a 50 percent

gain in productivity with their approach.

This report makes no attempt at being all-encompassing,

but rather seeks to provide a representative overview of the

status of software reuse research and practice. Chapter 2

provides a technical overview; the approach is to separately

4

discuss various facets of software reuse, as well as their

interrelationships. This includes an identification of

issues, and current approaches to their resolution.

Extensive use is made of the current literature in this

overview. Chapter 3 provides conclusions and some

recommendations for further research and for implementing

available research ideas.

Software reuse is indeed a multi-faceted subject, and

there are many good articles available for one seeking a

further grounding in fundamentals and history. A very

important seminal reference is the "landmark" September 1984

issue on software reusability of the IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING (Biggerstaff and Perlis 1984). Other

important references are the July 1987 special issue of IEEE

SOFTWARE on "Making Reuse a Reality" (Tracz 1987b). An

outstanding single paper that provides a good overview is

Biggerstaff and Richter 1987. Additionally, many of the

papers listed in the Reference section contain good overview

material.

5

2. FACETS OF SOFTWARE REUSE

In this chapter we consider many facets of software

reuse that are currently undergoing consideration and

experimentation. We attempt to "decompose" software reuse

in such a way as to understand the nature and issues of

software reuse, to examine current research directions and

practice, and to identify promising approaches and candidate

areas for further emphasis.

6

2.1 Definitions of Reuse/Reusability

The way we define terms is critically important, since

our understanding is determined (focused, limited) thereby.

There seem to be two fundamental definitions of "software

reusability". With variations in wording, they are:

(a) the extent to which a component can be used in a

context other than the one for which it was

originally developed;

(b) the extent to which a component can be used in

multiple applications.

Definition (a) suggests that reuse is an incidental result

from software development; definition (b) suggests planned

efforts toward reuse. While the prefix "re" of the word

reusability may inherently suggest definition (a),

definition (b) appears to be a more productive and better-

focused definition, and likely better characterizes most

current research. Perhaps definition (a) better

characterizes the previous achievements in reuse, and (b)

recognizes the need to emphasize reuse as a worthy focus

within itself (more on the latter point in section 2.7).

In this report we generally use the term "reuse" rather

than "reusability"; it is a shorter word, and perhaps has

the merit of conveying a more active tone than is true of

"reusability". Clearly, reuse is the goal, while

reusability is necessary in order to achieve the goal.

7

2.2 Barriers and Incentives

While sofiware reuse is widely applauded as "a good

thing", there are inherent difficulties in bringing it about

in practice. Hall (1987b) cites technical, social, economic

and legal barriers to reuse. The difficulties are greater

between companies, and between a company and the U.S.

Department of Defense (DoD), than is true within a single

organization; but even within an organization, competition

between groups and funding approaches inhibit reuse. Reuse

is hampered by the practice of funding projects essentially

in isolation--thus project A doesn't get funds to generalize

software for the benefit of projects B and C, and may put

itself at a disadvantage if funds are so spent.

It appears that a company must always retain some

proprietary software, for competitive advantage. To the

extent software is placed in a repository for general use,

how is a company to be rewarded? A company must be duly

compensated somehow for the expected loss of the revenue

that retention of the software would have given them. A

related issue is that it is so easy to steal software--and

thus bypass any mechanisms devised to compensate the

developers. And, what is the financial incentive to be for

a contractor to reuse existing code in a DoD project (when,

if they develop it "from scratch", they would make a profit

in doing it)? Hall (1987b) mentions the idea of a "meter"

within a software component, that counts uses, and charges

accordingly. Clearly DoD and other agencies must come to

8

grips with the legal and contracting issues involved, for

the national benefit. Tax considerations are a factor, as

to how a software purchase is "written off". Software

copyright laws are also an issue. Some sort of royalty and

licensing fees are required, and maintenance agreements are

important.

The "not invented here" (NIH) syndrome plagues us all

to some extent, and has been especially pervasive among

software development personnel. Programmers resist using

software developed by a colleague "down the hall", let alone

by another company. Healthy skepticism is a valuable asset

to a software developer, in many of his/her activities. The

way to overcome the NIH issue seems to be for an

organization's management to strongly, consistently and

intelligently emphasize and require reuse. This involves

ensuring the correctness of reusable code, so that trust can

be built up on the part of software personnel. It also

involves effective technical mechanisms for locating and

using existing code (section 2.5). Reuse achievements of

personnel should result in positive rewards from management.

The primary incentive for reusing software will

presumably be potential cost savings. With effective

economic and legal mechanisms in place, this should be

realizable. And, since cost will be spread over many

projects, very rigorous verification of components should be

feasible and cost-effective. A study is being undertaken by

9

Fairley et al (1989), to develop effective cost models for

reuse. Barnes et al (1987) present a framework for

analyzing the costs of reuse. The initial cost of

developing reusable software is greater than that of other

software, and is an inhibiting issue. Clearly the

expectation must be of recovering the additional investment

in subsequent uses. An additional incentive for reuse in

the U.S. no doubt is the reported success in reuse of our

economic competitor Japan.

An example of a successful reuse project is reported by

Carstensen (1987), of Magnavox. The AFATDS project for the

U.S. Army consisted of approximately 770,000 lines of Ada

code, of which about 100,000 lines were reused code. Of the

100,000 lines, about 30,000 were reused unchanged, and about

70,000 resulted from tailoring existing modules. They used

object-oriented design (section 2.7) and believe it

facilitated reuse. By way of incentive for reuse, at

project initiation they determined and costed a specific

software reuse factor, that had to be met to stay on

schedule and within budget. As Carstensen notes, this

requires acceptance of some risk by project-level

management; and he emphasizes that whatever incentives are

used, the single most important incentive (factor) is the

acceptance by project management of any real or perceived

risks associated with the reuse of previously developed

software. Lanergan and Grasso (1984) also emphasize the

role of management personnel in Raytheon's successful reuse

10

project.

There are numerous remaining issues, including lack of

methodologies incorporating reuse, inadequate library

mechanisms, and the use of many different programming

languages. But, as Bott and Wallis (1988) note, "the main

obstacles to the widespread adoption of reuse as a standard

way of writing software are managerial rather than

technical." And, they further observe that "Software reuse

will not happen merely because the technical means of

achieving it become available. Nor will it be applied

successfully within an organization merely because it

becomes official policy."

There are efforts underway to establish guidelines for

reuse within organizations. Examples are Lesslie et al 1988,

SofTech 1985, and St. Dennis 1987. And there is at least

one commercially-available reuse library--offered by EVB

Software Engineering, Inc. (Reston, Virginia), based on

Booch's work (Booch 1987). The AdaNET project, summarized

in Chapter 1, can become a good reuse sharing mechanism, and

perhaps a good "testbed" for dealing with some of the

issues mentioned above.

For the benefit of those who may wish to pursue these

issues further, good discussions may be found in Biggerstaff

and Richter 1987, Hall 1987b, Geary 1988, Bott and Wallis

1988, Wood and Sommerville 1988, Frakes and Nejmeh 1987.

11

2.3 Abstraction Levels of Reuse

The "products" for reuse may be considered and

characterized relative to activities of the life cycle. We

can characterize these activities as:

* domain analysis

* requirements specification

* high-level design

* detailed design

* coding

* testing and integration

* documentation

maintenance

In principal, we should expect a greater return from the

higher-level abstraction activities, if their products can

be reused. Thus, a reused requirements specification should

give us greater leverage than a reused code module. Much

knowledge is gained from the life cycle activities, only

part of which is usually recorded and retained. In addition

to requirements specifications, designs, code, test

documents, test cases, integration plan, etc.--which are

recorded, we also have learned much about the application

domain during a project, and have determined rationale for

design decisions, tradeoff considerations in decomposition

and allocation to system components, etc. And almost always

some knowledge is "factored out" as we proceed through the

refinement process; but knowledge--acquired "the hard way"

during a project--is exceedingly valuable for retention.

12

Some of the research efforts summarized in this report are

focusing on this issue, and are devising means to retain

knowledge and experience for subsequent use. Examples of

the approaches are entity-relationship-attribute models,

and rule-based approaches. Yamamoto and Isoda (1986)

explicitly address this issue, and propose a mechanism for

capturing the experience during a project. Ramamoorthy et

al (1986) propose a means to recapture some information from

existing code--recognizing that much of the needed

information is not available in the code (they recommend

structured comments for provision of additional

information). Bott and Wallis (1988) and Biggerstaff and

Richter (1987) emphasize the need for a simplified "user

model" (or, "mental model") of a system, to aid reuse. More

about these ideas in subsequent sections.

It should be noted that experienced personnel naturally

retain much knowledge of their previous work; thus "reuse of

personnel" is extremely advantageous in software development

within an application area. It appears that much of the

productivity increase in software reuse reported by Japanese

software developers is due to their success in retaining

experienced personnel, and capitalizing on .he knowledge and

experience they have gained. Fujino (1987) comments on the

balance of emphasis between motivation of personnel, and

software automation.

Mechanisms for reusing software products other than

13

code have been slow to appear, but a number of research

efforts now underway are beginning to address this need. An

example is the work of Finkelstein (1988), who is conducting

research in means to detect opportunities for reuse based on

requirements specifications. He made an attempt to "marry"

his concepts with an existing requirements specification

language with little success, and concludes that a

requirements language should be devised in which the

primitive elements have been selected with reuse in mind.

Neighbors (1984) has developed the Draco approach, in which

he proposes the use of a different "domain language" for

each different problem area. The objects and operations of

a domain language would represent analysis information in

the problem domain; thus analysis and design information, in

addition to available code modules, would be reused each

time the domain language is used to describe a problem

solution.

In this report, the word "component" is used to mean

any type of software entity that may be reused (e.g., code

modules, designs, requirements specifications). In the next

section we consider various approaches to the reuse of

components of source code.

14

2.4 Mechanisms for Reusable Code

Reusable code is the most-researched of the reuse

abstraction levels; more is known about it, more has been

written about it, and indeed most of the software reuse has

been based on code alone.

There are two different clearly-distinguishable

categories of code components for reuse. The first may be

called "passive" components, or "building blocks", which are

used essentially unchanged. Another approach--very

effective when feasible--is "dynamic components" (i.e.,

"generators"), which generate a product for reuse. This

approach is also spoken of as reusable "patterns".

Generators are of two fundamental types (Biggerstaff and

Richter 1987): (a) application generators (employing

reusable patterns of code), and (b) transformation systems

(which generate a product by successive application of

transformation rules; e.g., see Cheatham 1984). Generators

by their nature tend to lift the abstraction level for reuse

above that of code building blocks. For example, compiler

syntax analyzer generators (e.g., YACC) do their work with

little need for the user to understand the underlying

concepts. Simulation languages/systems constitute another

application of reusable patterns to achieve effective

leverage (Hooper 1988). Prototyping usually is based on

significant reuse of software; it may be very-high-level-

language based, somewhat like simulation languages, and/or

may be based on code blocks. Fourth generation languages

15

constitute another kind of reusable pattern, and also

substantially lift the reuse abstraction level.

Code blocks for reuse have historically been

subprograms (procedures, functions), and now also include

Ada packages (collections of reusable subprograms with their

encapsulated environment), classes (in the sense of object-

oriented programming), and Ada generics. Parameterized code

may be based on any of the forms of code blocks just

mentioned. Also, code templates may be used, with slots to

be filled in by a user to customize for a given application.

Reference to these different ideas for reusable code

components will occur in the subsequent sections.

The recent past has brought better programming

languages for reusability support--especially Ada. Modula-2

and various other available languages also have some good

features. But the DoD mandate for use of Ada doubtless

makes Ada the language of choice for code reuse, and Ada has

very strong features, such as the package (information

hiding, encapsulation) and generics. More on this in later

sections.

16

2.5 Mechanisms for Reuse Repository Operation

There are a number of operational issues that must be

addressed in order to effectively make use of available

reusable software products. Included are the need to (a)

classify and retain components ready for reuse; (b) find

components that meet specific needs; (c) understand

identified components; (d) adapt components as necessary;

and (e) compose components into a complete software system.

These operational issues span the abstraction levels of

software realization (section 2.3)--i.e., they apply to

components of requirements specification or design just as

they do to code. However, to the present time research and

experience have primarily pertained to code modules.

In the following subsections we consider the five

operational issues (a) through (e) stated above, in turn.

2.5.1 Classifying and Retaining Components

Considerable research activity is underway in this

aspect of reuse repository operation. Prieto-Diaz and

Freeman (1987) have developed the "faceted" classification

method, based on ideas from library science. Each component

is characterized by a sextuple consisting of:

<function, objects, medium, system type,

functional area, setting>.

Figure 1 (from Prieto-Diaz and Freeman 1987) gives an idea

of what each of the facets means. They incorporate the idea

of "conceptual closeness", to give a user a measure of how

17

closely an available component corresponds to a specified

facet during retrieval.

Function Objects Medium System type Functional area Setting
add arguments array assembler accounts payable advertising
append arrays buffer code generation accounts receivable appliance repair
clan backspaces cards code optimization analysis structural appliance store
compare blanks disk compiler auditing association
complement buffers file DB management batch job control auto repair
COmpres characters keyboard expression evaluator billing barbershop

ramte descriptors line file handler bookkeeping broadcast station
decode digits list hierarchical DB budgeting cable station
delete directories mouse hybrid DB capacity planning car dealer
divide expressions printer interpreter CAD catalog sales
evaluate files screen lexical analyzer cost accounting cemetery
uchange functions sensor line editor cost control circulation
Gipend instructions stack network DB customer information classified ads
format integers table pattern matcher DB analysis cleaning

mput lines tape predictive parsing DB design clothing store
heart fists tree relational DB DB management composition
join macros retriever computer store
masure pages scheduler
modify
move

Figure 1. Sample Facet Choices
(from Prieto-Diaz and Freeman 1987)

Ramamoorthy et al (1986) have selected the entity-

relationship-attribute (ERA) model as the basis for

cataloguing and retrieving reusable components. They use

such attributes as classification (requirements, design,

source, test case, document, library, object code),

hierarchy (family, member, layer, module, procedure), and

non-functional attributes such as reliability, memory

requirements, performance, and metrics concerning quality

and complexity. Their relations include classification-to-

18

classification, hierarchicallevel-to-hierarchicallevel,

use of resources, etc. They have developed the Entity

Specification Language (ESL) to support software personnel

in inserting, modifying or deleting information in the

library.

Mittermeir and Rossak (1987) have proposed library

organizations which they call "software archives" (to

support the retrieval of design units for potential reuse),

and "software bases" (to support retrieval of executable

code). They represent the structure of a software archive

by a four-dimensional "cube", the dimensions being

decomposition, representational form, association

(application-dependent links), and generalization

/specialization. This structure thus uses links among

components to represent knowledge about interrelationships.

Wood and Sommerville (1988) have taken a cataloguing

approach based on natural language processing--specifically

the idea of "concept case frames". They rely on a system

creating component descriptor frames (their version of

concept case frames) by means of a form-filling interface.

There is a component descriptor frame for each basic

function that software performs--representing a class of

conceptually-similar verbs (e.g., search, look, and find).

There are four slots in each frame corresponding to: a

library component, objects manipulated by the component,

objects produced as a result of the action, and objects that

19

provide a context for the action. An example is (in order):

a report generator, a personnel record, a formatted report,

directives that describe the desired report. This

organization was devised to improve the process of retrieval

(subsection 2.5.2).

The RAPID Center Project was mentioned previously. As

part of this project (being pursued by SofTech under

contract to the U.S. Army Information Systems Engineering

Command), the RAPID Center Library (RCL) System is being

developed (Guerrieri 1988). Classification is based on the

faceted classification scheme of Prieto-Diaz and Freeman

(1987). User activities supported relative to reusable

software components are identification, extraction, and

report generation. The RAPID Center will also provide

guidance to users by technical staff.

Gagliano et al (1988) have developed an experimental

reuse library system, based in part on Prieto-Diaz's work,

for reusable Ada components. They plan to develop several

tools to ease the development and use of a reuse library.

All the kinds of products discussed in section 2.3

should be retained in the repository. And, there should be

relationship information between components (e.g., between a

design component and the corresponding code, between a

system specification and a subsystem specification, between

two components that are related by reuse potential within a

given application domain, and between two components such

that one is a specialization of the other).

20

Research is underway to examine appropriate structures

for database support for software reuse (e.g., Bein et al,

1988; Frakes and Nejmeh 1987)--i.e., to determine how best

to use the knowledge and systems of database management and

information retrieval to support the creation and use of

software repositories.

2.5.2 Searching and Retrieving

In the case of the faceted classification scheme

(Prieto-Diaz and Freeman 1987), the search is based on

specification of a sextuple of descriptive keywords (see

2.5.1). The user forms a query using the thesaurus to

select a representative term for each facet. The user can

use the asterisk rather than a keyword for a facet, to

generalize the query. The user can also request "expansion"

of a query by having one of the specified facets replaced by

other keywords, in order of conceptual closeness. The

researchers have also attempted to provide ranking of the

retrieved components based on user profiles; e.g., it is

more important for novice programmers to attempt to use very

small programs (in terms of lines of code) than is true for

more experienced programmers.

Ramamoorthy et al (1986) have developed the Resource

Extractor (REX) for use in forming queries using attributes

and/or relations as qualifiers. Example queries (from

Ramamoorthy et al 1986) are:

21

SET HighReq = SoftwareResources

Classification = Requirements

Performance = High.

This query results in the creation of a set HighReq

containing those elements of the set SoftwareResources

whose elements satisfy the specified relation and attribute.

Wood and Sommerville (1988) provide a forms-based

interface to their library implementation on a Sun

workstation; it prompts the user for either a .rerb

describing the action of a component or for a noun

representing an object manipulated by the component.

Thereby the system undertakes constril-- 4on of a component

descriptor frame (section 2.5.1); partially-completed frames

are used to search the database; the user is provided lists

of candidates for filling in other slots, and on-line helps

are available. The user can select either a keyword search,

in which an exact match on specified names must occur,

or can permit components to be retrieved based on conceptual

classes of verbs, for example. They plan to extend the

system to include a browsing mode, and tools to integrate

reuse with automated design tools.

Tarumi et al (1988) have developed a rule-based

retrieval mechanism, based on user inputs of object names,

attributes, relations, and operations. Names may have

aliases. Their approach is a mixture of formal and informal

methods; they emphasize the importance of this combination,

believing that it yields simplicity and user friendliness.

22

Frakes and Nejmeh (1987) propose the use of information

retrieval systems for locating code components for reuse

(and this could be extended to other abstraction levels).

Information retrieval (IR) systems deal with formatted text,

as well as unformatted text which is not usually dealt with

by database management systems. They have devised a novice

user mode, which is menu driven, and a command mode for more

experienced users. They have developed an experimental

system called CATALOG, written in C under UNIX and MS-DOS.

Help messages are available, and partial term matching is

done using such sophisticated IR techniques as automatic

stemming and phonetic matching. They propose that all

components submitted to a reuse library must begin with a

standard prologue of descriptive information, to form the

basis for subsequent search and retrieval of the component

(e.g., name, description, supporting documents, author,

date, usage, parameters). With the advent of special-

purpose hardware for IR (e.g., see Smith 1989) and resulting

greatly-improved responsiveness, IR techniques are worthy of

research emphasis for reuse support. Frakes and Nejmeh

(1987) also mention the promise of user feedback in

conjunction with IR use.

Three important aspects of the retrieval process are

discussed by Wood and Sommerville (1988), which are concepts

from information retrieval. They are recall, precision, and

ranking. Recall pertains to the percentage of relevant

23

components that are identified; precision pertains to the

percentage of identified components that are relevant; and

ranking orders identified components by quality of match (to

address the "information overload" issue). These are all

substantive issues, and will be increasingly important as

reuse libraries become larger.

In section 2.2, we summarized a successful research

project reported by Carstensen (1987). He described an

approach they took to library browsing, in which the user

may specify English language '- uns and verbs as search

vectors. Based on potential matches, the user is first

presented two-sentence abstracts of all candidate

components. If desired, a more complete abstract (up to one

page in length) may be requested for any of the components.

2.5.3 Understanding Identified Components

Standish (1984) estimates that software maintenance

costs 70-90 percent of the life cycle, and understanding

accounts for 50-90 percent of maintenance cost. This would

mean that understanding accounts for 35-80 percent of life

cycle cost. Understanding is absolutely critical to

software reuse--especially if a component must be adapted.

Berard (EVB 1987) discusses the importance of good

software engineering practice for reuse. Coding style is

very important--e.g., using meaningful identifiers, avoiding

literal constants, using adequate, concise and precise

24

comments, making frequent and appropriate use of packages,

isolating and clearly identifying environmentally-dependent

code; and, modules should be highly cohesive and loosely

coupled. In general, as implied above, the approaches that

promote understanding for maintainability serve equally well

for reuse. Indeed, Barsotti and Wilkinson (1987) argue that

reusability of code is essentially a by-product of quality

and maintainability. To this end, they recommend:

* using certified algorithms

* defining error handling

* defining exceptional conditions

* establishing explicit interfaces

* developing modular programs

* parameterizing

* providing all test data and reports

They also provide a list of "quality criteria", as follows:

accuracy, application independence, augmentability,

completeness, conciseness, consistency, fault tolerance,

generality, legibility, self-descriptiveness, simplicity,

structuredness, system accessibility, and traceability.

They provide precise definitions to all these terms. By

application independence they mean nondependency on the

database system, microcode, computer architecture and

algorithms (i.e., not independence from an application

domain); this thus includes the important criterion of

portability. By system accessibility, they mean provision

25

for control and audit of access to the software and data.

They indicate that all these criteria support

reusability; all support maintainability except accuracy,

application independence and fault tolerance; and

reliability is supported by all except application

independence, augmentability, generality, self-

descriptiveness, simplicity, and system accessibility.

While one could argue with some of these particulars, the

concepts are worthwhile. These and other criteria relate to

the concept of software metrics--criteria by which the

suitability of software may be measured.

St. Dennis (1987) suggests a list of 15 language-

independent characteristics of reusable software, as

follows: (1) interface is both syntactically and

semantically clear; (2) interface is written at appropriate

(abstract) level; (3) component does not interfere with its

environment; (4) component is designed as object-oriented;

that is, packaged as typed data with procedures and

functions which act on that data; (5) actions based on

function results are made at the next level up; (6)

component incorporates scaffolding for use during "building

phase"; (7) separate the information needed to use software,

its specification, from the details of its implementation,

Its body; (8) component exhibits high cohesion/low coupling;

(9) component and interface are written to be readable by

persons other than the author; (10) component is written

with the right balance between generality and specificity;

26

(11) component is accompanied by sufficient documentation to

make it findable; (12) component can be used without change

or with only minor modifications; (13) insulate a component

from host/target dependencies and assumptions about its

environment; isolate a component from format and content of

information passed through it which it does not use; (14)

component is standardized in the areas of invoking,

controlling, terminating its function, error-handling,

communication and structure; (15) components should be

written to exploit domain of applicability; components

should constitute the right abstraction and modularity for

the application.

In addition to these language-independent guidelines,

St. Dennis provides seven Ada-specific guidelines, which

will not be repeated here.

Bott and Wallis (1988) argue that (a) we need to use

components that implement fairly complicated functions in

order to achieve large benefits from reuse, and that (b) in

order to do so it is essential to reduce the perceived

complexity of components as seen by the system designer.

They maintain that, to this end, components must be designed

for reuse from the beginning; and, their major theme is that

components must conform to some kind of simplified "user

model" of the system which they support, to relieve a user

of detailed coding concerns. An example of such a user

model is that of compiler construction (the front-end/back-

27

end division, and the compiler phases). They also note that

UNIX users benefit from the simplicity of its "user model";

although it is a very complicated system, enough can be

learned very quickly to allow useful activities to occur.

Biggerstaff and Richter (1987) refer to this simplified

model as the "mental model", and state that developing such

a model is probably the fundamental operational problem to

solve in development of any reuse system. They suggest the

use of hypertext to help solve the problem.

Chen and Ramamoorthy (1986) have developed the C

Information Abstractor, which scans C programs and stores

information into a database. The information obtained

primarily relates to objects that can be accessed across C

file or function boundaries--namely, files, functions,

global variables, global types, and macros. An Information

Viewer is provided to operate on the database, and provide

answers to such questions as: what functions call a given

function, where is a certain variable defined, what

functions access a given global variable, what is the type

of a variable. Since some important information cannot be

extracted from the code (e.g., underlying assumptions, the

algorithm used, computational complexity, necessary

preconditions), the authors propose the use of structured

comments to provide the information to the Abstractor.

Examples of such information they suggest are: purpose,

assumptions, preconditions, assertions, algorithm

description, algorithm complexity.

28

Chen and Ramamoorthy (1986) also comment on software

metrics, noting that software quality, testing required, and

maintainability, depend on such metrics as function-to-file

bindings, file-to-file bindings, the number of objects

related to a given function, and the number and depth of

calling paths starting from a function. They observe that

an examination of such metrics may well indicate the need

for restructuring prior to reuse. They are considering

means to handle some of the details automatically, using the

program database.

Basili et al (1988) are undertaking research to

evaluate the reuse implications of Ada modules based on the

explicit and implicit bindings of the module with its

environment. They are planning tool support, and have

formulated guidelines for code development based on the

research conducted so far.

Research in "reverse engineering"--approaches for

"unraveling the product ... to its earlier life cycle

development phase(s)" (Sayani 1987), can provide important

leverage in aiding the understanding process, and

alleviating to some extent the need to attempt to understand

code.

2.5.4 Adapting Components

The ideal situation is that a component (or components)

will be identified which exactly meets the need. That will

29

doubtless often not be the case, however. Understanding the

component (subsection 2.5.3) is the key to the decision

process, of course. "Goodness of fit" of an available

component might well be measured by the effort required for

adaptation. This would provide guidance when multiple

components are identified which are candidates for

selection. If a component is functionally adequate--i.e.,

it performs a needed role in an acceptable way, then there

should be little or no adaptation required if the component

is highly cohesive and has no side effects.

Ramamoorthy et al (1986) give some parameters for use

in deciding whether to reuse a component. They are:

Nnr: Number of lines to be written if no reuse;

Nmr: Number of lines to be modified for reuse;

Nr: Number of lines which are being reused;

Enl: Effort the organization needs for writing
a new line;

Eml: Effort the organization predicts for modifying
a line;

Emal: Effort the organization needs for maintaining
a line;

Nrb: Number of times previously reused;

Net: Number of errors found in some fixed period;

Nel: Number of errors found per fixed number of lines;

DocQ: Documentation quality;

DesQ: Design quality;

M: Match for non-functional characteristics;

Exp: Experience with the package to be reused;

30

Org: Organization maintaining the package to be

reused;

Dev: Availability of the original developers;

Time: Time available for the project.

They suggest some basic rules for deciding which component

to reuse, such as:

(1) Nmr * Eml should be less than Nnr * Enl;

(2) Net and Nel should be less than some predefined

constant;

(3) DocQ and DesQ should be greater than some

predefined minimum constants;

(4) If Nr > CNr and Nrb > CNrb, then reuse the

component (where CNr and CNrb are appropriately

defined constants). This is relying on the likeli-

hood that a more frequently used component is

of higher quality for reuse.

If code requires adaptation, the design and/or

specifications corresponding to the code component (and

hopefully retained in the repository) will likely prove to

be very important. If the component must be rewritten in a

different programming language, the high-level design should

serve as the basis--which is also true if the number of code

"patches" required for adaptation is large.

Parameterized code is developed with the intent that

input parameters cause "adaptation" of the code, as pre-

planned. And, generators are driven by input directives to

31

"adapt" within a pre-planned range. Ada generic procedures

provide a mechanism for developing a "family" of procedures

for which data types may be specified--and thus a specific

"adaptation" created.

Asdjodi (1988) has developed, as part of a prototype

reuse system (discussed further in section 2.7), the

capability to automatically alter data structures as

required for use by a belected component; thus, for example,

if the output of one component is a matrix, and the input

for another is a linked list, her knowledge-based system

would cause automatic generation of the required linked

list. In the prototype system only matrices and linked

lists are used; however, the concepts could be extended to

any type of data structures.

Notkin ard Griswold (1988) have developed a UNIX-based

"extension" mechanism, based on an Extension Interpreter

(EI). The EI consists of an arbitrator, which

hierarchically maps procedure names to procedure

implementations; the dynamic linker, which gives the flavor

of interpretive environments like LISP; and the translation

subsystem, which translates data between representations

used by different languages. These components connect

program components with a user interface. Their emphasis is

on reusing source code without the need to change it.

Thus, the more fine-grained the available procedures, the

more likely that new capabilities can make use of them.

32

2.5.5 Composing Components

Composition refers to interconnecting components to

form software systems. Numerous ideas have been proposed;

obviously the most straightforward approach is when the

component is a procedure which perfectly meets the need;

then composition results from a procedure call, coupled with

the action of the "linker". The same is true, of course,

if we can successfully adapt a procedure for reuse. This is

a very convenient process, but it is very limiting as the

only mechanism for composition.

Goguen (1986) proposes to achieve composition by means

of the "library interconnection language" (LIL). As it

stands, LIL's syntax is Ada-like, and relies on Goguen's

earlier work based on specification by use of axioms. He

lists the following desirable techniques for constructing

new entities from old ones:

(1) set a constant (e.g., the maximum depth of a
stack);

(2) substitute one entity for a stub or parameter in

another;

(3) sew together two entities along a common interface;

(4) instantiate the parameters of a generic entity;

(5) enrich an existing entity with some new features;

(6) hide (abstract or encapsulate) some features of
an existing entity, either data or control
abstraction;

(7) slice an entity to eliminate unwanted function-
ality; or

33

(8) implement one abstract entity using features
provided by others (leading to the notion of a
vertical hierarchy of entities).

LIL is an example of a "module interconnection

language". The goal of such languages is to interconnect

modules--which may be written in different programming

languages--without having to modify the modules, assuming

that they provided needed functionality.

In section 2.7 the object-oriented MELD mechanism of

Kaiser and Garlan (1987) is discussed. The idea is to

compose object-oriented components by merging data

structures and methods from different components.

Tracz (1987a) describes a reuse system based on Ada

components, using both parameterization and application

generators. He describes an interactive dialog of menus and

prompts to obtain necessary parameters for a particular

application. Then, based on the component library and the

parameters, the generator creates a compilable Ada

application program. In order to prepare for reuse in a

given application domain, it is necessary to do a "domain

analysis" (discussed in section 2.6), identifying likely

candidate applications. Parameterizing must be done,

ranging from something as simple as character strings that

may be substituted in the source code, to specification of

how to assemble pieces of a program. In the latter case, it

could be that an existing program was "dissected" for just

this purpose, as a result of domain analysis.

34

Other important mechanisms for composition are UNIX

pipes, and inheritance in object-oriented languages. Both

of these have considerable benefit in shielding the user

from the need to understand code, per se; in the best case

the code can be treated as a "black box".

35

2.6 Identifying Reusable Components

As we have noted in section 2.2, it is necessary to

systematically undertake software reuse within an

organization if it is to be effective, which involves

committment by an organization's management, including

funding to "make it happen". Necessary to success is a

well-populated repository of software components, along with

mechanisms for repository management (the latter is

discussed in section 2.5).

A few organizations have used the approach of taking

all the software being developed and placing it into the

repository (referred to by one wag as a " software

junkyard"). The software components should be carefully

chosen, considering that often the development costs should

be considerably higher than for the usual software. This

may be due to the form the reusable software takes (generic,

parameterized, application generator, etc.), and to the

rigor employed in testing it, due to its expected repetitive

use.

There seem to be basically two categories of software

that are good candidates for reuse. These could be referred

to as horizontally-reusable and vertically-reusable

components. Horizontal reuse refers to reuse across a broad

range of application areas (such as data structures, sorting

algorithms, user interface mechanisms), while vertical reuse

refers to components of software within a given application

area that can be reused in similar applications within the

36

same problem domain (Tracz 1987a). Horizontal reuse has, no

doubt, been studied the most so far--e.g., Booch's work

(Booch 1987), and likely such reuse has occurred much more

frequently than vertical reuse. The main reasons for this

likely are that such reuse is better understood and easier

to achieve. On the other hand, the greatest potential

leverage can come from vertical reuse--by intensive reuse of

carefully crafted solutions to problems within an

application domain. The CAMP project (McNicholl et al 1986)

is an example of vertical reuse.

In order to achieve vertical reuse, a "domain analysis"

is required--meaning that the processes and objects which

make up the domain, and the relationships between them, are

understood and recorded (Hutchinson and Hindley 1988).

Hutchinson and Hindley (1988) report on their work in

developing a domain analysis method. Their goals were:

* to discover the functions that underwrite reusability;

* to focus the domain specialist's attention on reuse;

* to help the domain specialist ascertain reuse
parameters;

* to discover how to redesign existing components for
reuse;

* to organize any domain for reuse.

The domain analysis was done by a "reuse analyst" with the

assistance of a "domain specialist"--an individual with an

excellent understanding of the problem domain. The

researchers developed "structured domain analysis

37

techniques" based on questions devised to assess a software

component's reusability. The domain on which they based

their experimentation was a simulation of the utility

systems management (USM) system of the Experimental Aircraft

Programme (EAP) in the United Kingdom. The subdomains they

considered were propulsion, fuel management, and

undercarriage. These were chosen by the domain specialist

for reuse consideration due to the fact that, in the case of

propulsion, the controlled hardware (the engines) would not

change significantly between the EAP implementation and the

next project; fuel management was chosen because the domain

appeared to contain a lot of functional duplication within

the requirements definition; undercarriage was chosen

because much of its operation would not change on future

implementations.

The reuse analyst decided on three levels of reuse, to

clarify the domain: the initial level pertained to reuse of

the whole system, the next level to reuse of subsystems, and

the final level to functions at the requirements level and

to components at the design and code levels. The reuse

analyst presented twelve questions to the domain specialist,

based on the assumption that it is domain-specific knowledge

which can isolate reusable components. The questions seek

to elicit identification of reuse attributes and reusable

components in an understandable manner. The questions are:

* Is component functionality required on future
implementations?

38

* How common is the component's function within the
domain?

* Is there duplication of the component's function
within the domain?

* Is the component hardware-dependent?

* Does the hardware remain unchanged between
implementations?

* Can the hardware specifics be removed to another
component?

* Is the design optimized enough for the next
implementation?

* Can we parameterize a non-reusable component so
that it becomes reusable?

* Is the component reusable in many implementations
with only minor changes?

* Is reuse through modification feasible?

* Can a non-reusable component be decomposed to
yield reusable components?

* How valid is component decomposition for reuse?

The analysis resulted in the following:

In the propulsion subdomain, of 19 functional

requirements identified, one component was classified as

reusable without change, 14 were classed as reusable with

slight modification, and four were classed as non-

reusable.

In the fuel management subdomain, of 26 functional

requirement components identified, two were classed as

reusable without change, 14 as reusable with slight

modifications, and 10 as non-reusable.

In the undercarriage subdomain, of 10 functional

39

requirements components identified, all 10 were classed

as reusable with slight modifications from the

requirements level.

The authors observe that reuse proved to be practical, even

in the hardware-dependent areas being analyzed. They

assessed the requirements functions as potentially 75%

reusable for the next implementation, and indicated that

reuse could be equally high for code designed fcr reuse from

these requirements.

They describe their work in preparing one reusable

software component in Ada for the fuel management subdomain.

This was a valve control simulation--significant because the

requirement for a valve control simulation was repeated in

at least 11 places. In preparing the Ada code, they

emphasized Ada strengths for reuse--namely, information

hiding, data encapsulation, packages and generics. They

first devised a package based on the original design, then

generalized the package to handle similar valves by creating

a valve type to hold status information on the valve. Then

they abstracted the problem to yield a general package to

operate a two-state device which takes a finite amount of

time to switch between states; this resulted in a generic

Ada package.

They report that producing the generic package took

approximately five times as much development time as coding

the original software design (in PDL). Most of this time

40

was spent educating the Ada designer in the requirements for

a truly generic module. They expect that once a designer

understands Ada generics and where they are applicable, the

development overhead would be about twice that for a non-

generic module.

The above rather lengthy description of the work of

Hutchinson and Hindley has been provided because it is

thought to offer very good insights into the problems of

working through the process of identifying potentially

reusable components.

Tracz (1987a) also goes through an example of domain

analysis, and the subsequent reusable software design, based

on his use of both parameterization and application

generators. His general approach to software composition is

summarized in subsection 2.5.5.

Prieto-Diaz (1987) gives a good discussion of domain

analysis, including examples from Raytheon (business

applications; Lanergan and Grasso 1984), and the CAMP

project (McNicholl et al 1986).

41

2.7 Software Development Incorporating Reuse

It is apparent that software reuse will not occur

without an organized plan to bring it about. Also, reuse

requires (and deserves) integration into the software

development process. At present, as stated by Ramamoorthy

et al (1986), "reusability is a matter of coincidence rather

than the driving force behind the software development".

Based on research results, Finkelstein (1988) states, "Reuse

cannot be tacked on to existing software engineering

techniques, but must be built in at conception." This

implies significant alteration of the software development

process and supporting tools.

An increasingly-important methodology is object-

oriented design (OOD). It is considered by many researchers

to be promising relative to software reuse. Booch (1987)

combines object-oriented design with component reuse--and

has spurred a great deal of interest in the promise of

reuse. Another influential advocate of OOD as the basis for

reuse is Meyer (1987). His Eiffel language serves as the

basis for his reuse research and recommendations.

Lieberherr and Riel (1988) have designed the Demeter

system based on OOD, coupled with parameterized classes.

They seek to "grow" software (as recommended by Brooks

(1987)) through inheritance and parameterization, rather

than building software directly "from scratch".

Kaiser and Garlan (1987) have sought to improve OOD for

reuse by devising a notation (called MELD) which is

42

independent of any object-oriented language (and would be

translated into a conventional programming language). Their

system supports composition of components through merging of

data structures and methods from two or more "features"

(their name for reusable building blocks--similar in concept

to Ada packages). They employ inheritance and data

structure/behavior encapsulation from OOD.

Rogerson and Bailin (1987) conducted an experiment in

reuse based on OOD versus functional decomposition,

determining that is is easier to detect reusability within a

given context for objects (which they represented as Ada

packages).

As was mentioned above, Brooks (1987) has recommended a

fundamental change to the software development process. He

suggests the use of high-level prototyping, with successive

refinement into code. Yeh and his associates have

contributed research to life-cycle approaches incorporating

prototyping (e.g., Yeh and Welch 1987).

Notkin and Griswold (1988) suggest a fundamental

alteration to the software development process, by means of

an "extension" mechanism (supporting the incremental

extension of existing software (procedures)), to achieve the

enhancement of software (which accounts for nearly 40% of

the total life-cycle costs of software development). They

argue that their extension mechanism can improve the overall

software development process by encouraging bottom-up

43

l m mmm MEMM ME

development and testing, as well as enhancement.

Ramamoorthy et al (1986) propose a reusability-driven

methodology, as shown in Figure 2. They emphasize the

need for supporting tools, as discussed in section 2.5 of

this report.

the the inm ot

*nadd dacuuentaoo

Yes Rom"tbebomiosty

Add st to telibrary

Yes~~ wil Aot

Figure 2. Reusability-Driven Development Methodology
(from Ramamoorthy et al 1986)

Ramamoorthy's suggested approach is similar to that of

Asdjodi (1988). Asdjodi has developed and prototyped a

system based on the application domain of graph theory,

incorporating domain and programming language (Modula-2)

44

• ~ ~ ~ ~ ~ ~ ~ ~ ~ a ad dncumnennntatlamn I ~ [[[I I io

knowledge, along with a very high level language, to support

the alteration and composition of library components. Her

approach also emphasizes reuse as an integral activity of

the software life cycle.

Tarumi et al (1988) have developed a programming

environment for object-oriented programming, supporting

reuse of classes, with emphasis on an expert-system-based

retrieval mechanism. McKay (1988) has undertaken to develop

a life-cycle approach incorporating reuse, based on the

object-oriented method.

Burton et al (1987) of Intermetrics have conducted

research which seeks to provide tool support to integrate

reuse within the software life cycle; their system is called

the Reusable Software Library (RSL). Their approach makes

use of a graphic interface (SoftCAD) for high-level design

expression and automatic documentation generation, coupled

with Ada PDL for detailed designs. The Ada PDL is

automatically scanned for structured comments to determine

candidates for reuse. The user submits queries for needed

components; the researchers are experimenting with both

menu-driven and natural-language based approaches for

expressing queries. They attempt to help a user evaluate

candidate components by rating the candidates against

specified functional and qualitative attributes.

The current emphasis on CASE (Computer-Assisted

Software Engineering) tools is a very strong trend. While

some of the vendors list reuse support as a benefit, there

45

seems to be none which promote and support a specific

methodology that incorporates reuse. The available

capability seems to be to catalog components under a given

name, and then retrieve by means of that name.

An important additional need during the software

development process is to identify potentially reusable

components for addition to the reuse repository. This is

discussed in section 2.6.

Fischer (1987) notes H. A. Simon's observation that the

evolution of a system proceeds much faster if stable

intermediate parts exist. The idea is that these software

parts would be integral to the design process, just as

hardware IC's are to hardware design. Geary (1988) has

observed: "At present, software design is created and

components are only used if their specifications match

requirements. Hardware design, on the other hand, is

created to take full advantage of available components. In

summary, hardware is designed to use components, whereas

software uses components only if they suit the design."

A different mind-set, real committment to reuse, and

alteration of "business as usual" in software development

are necessary in order to realize the benefit of reusing

software.

46

3. CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions

Considering how very recently software reuse has been

directly addressed by researchers and practitioners, a great

deal of progress has been made. For many years incidental

reuse has occurred, and planned reuse has occurred with such

software as operating systems, language processors,

subroutine libraries, compiler generators, report

generators, graphics packages, accounting packages, and

spread sheets and many other fourth-generation languages.

These incidences of planned reuse have given an excellent

return on investment. Much more is needed, however, in view

of the continuing (and growing) cost overruns, late

deliveries, and error-prone and difficult-to-maintain

delivered software.

Many organizations, both private and government, are

conducting software reuse research and experimentation in

many countries, including the U.S., Japan, and several

European nations. The quality of the research being

reported has taken a marked upward turn, with very promising

results. The number of practical success storle isn't as

large as one could wish, but successes are occurring.

Notable successes are Magnavox's AFATDS project for the U.S.

Air Force (Carstensen 1987), and Raytheon's business

applications reuse (Lanergan and Grasso 1984). The CAMP

project (McNicholl et al 1986) is spurring a great deal of

47

experimentation, which should prove very fruitful. Also,

the U.S. Army's RAPID Center project should give needed

experience with large-scale reuse. The AdaNET operation

offers a good medium for reuse communication and

dissemination; the DoD Ada Software Repository also provides

a sharing mechanism for public-domain software. AIRMICS'

continuing reuse project is addressing various interrelated

issues of reuse. The major software research initiatives in

the U.S. are contributing also to reuse research (MCC,

Software Productivity Consortium, SEI, STARS, etc.).

Computer science departments and software engineering

programs are involving graduate students in both sponsored

and non-sponsored software reuse research. Also, national

workshops are focusing on software reuse, and sessions on

reuse are being held in many international conferences--

including software engineering conferences as well as those

emphasizing application areas, such as simulation and

telephony/telegraphy. Ada has become available, providing

effective language constructs for reuse. There appears to

be sufficient momentum at this time to achieve significant

advances in software reuse.

There are some very notable lacks/needs as yet,

however. The major successes so far have been in specific

application areas--i.e., vertical reuse (e.g., the Magnavox

and Raytheon efforts), while research results have primarily

emphasized horizontal reuse. Clearly the highest payoff

48

will tend to come from vertical reuse, since the software

systems involved tend to be very large and complex, and

often have a great amount of redundancy. Thus the CAMP

project, and efforts based on the CAMP rpusab' missile

parts, are important research efforts.

The repository management issues have received much

emphasis, and high-quality research and experimentation have

occurred. But there is as yet apparently no commercial

product on the market for managing libraries of components

(other than general database management systems). There is

no full life-cycle methodology available yet that

incorporates software reuse as an integral part of the

approach. Object-oriented design is a promising approach,

but isn't yet fully mature. And while considerable

attention is being given to reuse of products throughout the

life cycle, no effective, general means have been found to

automate the process of identifying available components

from statements of needs/requirements. Reuse is also often

prevented by the diversity of programming languages in use.

While there are substantial technical issues remaining,

the main obstacles to software reuse at present are

managerial rather than technical. The Magnavox effort

(Carstensen 1987) illustrates that with management

determination to reuse software, and with realistic

goals and willingness to assume some risks, success can

occur even with the use of ad hoc approaches. An important

management issue is retaining personnel for "reuse" within

49

an application area. Other issues are project funding

approaches, royalties/licensing fees, financial incentives

to a contractor to reuse software rather than create custom

software, tax considerations, and copyright laws. The "Not

Invented Here" (NIH) syndrome is also an impediment.

Effective cost modeling is needed, to analyze potential

opportunities to reuse software and to develop software for

reuse.

3.2 Recommendations

By all means, software reuse research should continue.

The potential payoff is absolutely phenomenal. And,

experimentation in large application-oriented domains will

provide important insights. The following paragraphs offer

some specific suggestions for software reuse research and

practice.

Management within organizations should take the

initiative to make software reuse a reality. This means much

more than just issuing an edict that software reuse will

occur--it means setting up workable approaches, with a

substantial library of components, and with sufficient

support staff. It means committing necessary funds

(consistently) to analyze application domains, and identify

software that can be effectively reused (from all life-cycle

phases). It means spending money "up front", for later

gains. If it is to work, positive rewards must come to the

50

technical personnel involved, who achieve productive reuse.

This can both motivate reuse efforts, and help with

personnel retention. Management must be prepared to accept

some risks in committing to reuse. And, software

development and maintenance must have component reuse built

in as an integral part of the processes. Perhaps for the

near term it isn't as important what the approach is, per

se, as that a specific approach is selected and carried out

with the collective committment of participating personnel

to make it a success. Great emphasis must be placed on the

quality of software developed in-house and that brought in

for reuse, to build up trust on the part of technical staff;

this can alleviate the NIH problem. Realistic reuse

guidelines (managerial and technical) must be developed and

enforced, emphasizing tailoring to an organization's

requirements and standards. Management can solve the issue

of language proliferation, by enforcing the use of a single

language (e.g., Ada).

Studies should be made of how to effectively share

software among companies and the government. This involves

legal and economic issues, such as how to compensate a

company over time for the investment made in developing

software, and how to compensate a contractor for reusing

available software rather than developing custom software.

The implicationf, of existing government standards for

software development (e.g., DoD Std. 2167A) must also be

51

dealt with, as well as specific mechanisms for government/

contractor contractual interrelationships.

Research should continue in technical approaches as

well. There are nu.aerous software development methodologies

in place which do not incorporate reuse (e.g., Structured

Analysis/Structured Design, SADT). The object-oriented

approach holds promise for reuse, due to the direct

relationship between components and domain entities. This

area needs intensive research; while ad hoc approaches to

reuse are better than none, most existing methodologies

ignore reuse, when what is needed is encouragement of reuse

by the methodologies. A methodology needs to emphasize the

awareness of the existence of available software components

in the software development and maintenance processes, and

accommodation of a design to use available components where

practicable. CASE support tools should emphasize specific

methodologies, and directly incorporate reuse.

A technical research area with very significant

potential, and which should receive immediate emphasis, is

that of devising requirements languages whose primitives are

tailorable to given application domains. This could permit

identification of available components for reuse--with user

guidance as necessary. Perhaps a natural approach would be

to tie such requirements expression to the object-oriented

approach. Underlying this capability, and others discussed

in this section, is the requirement for a means for

effective domain analysis. Further research into effective

52

domain analysis methods must also be performed.

The need for help in adapting components is an

important near-term goal. There are several important

research issues relating to it, that should be emphasized.

They include the ideas of a simplified mental model (user

model) of systems/components, hypertext, ERA and other

library organizations, reverse engineering approaches,

module interconnection languages, and code templates. Other

approaches for emphasis include automatic component

adaptation (parametric approaches, transformation methods,

generators, rule-based methods). Emphasis should also be

placed on capturing and retaining knowledge about the

tradeoffs and decisions made during the life-cycle

refinement process, organized for examination and

understanding.

Information retrieval (IR) methods are promising

relative to reuse retrieval needs, due to their greatly

improved execution performance based on emerging special-

purpose hardware. The issues of user feedback, and recall,

precision and ranking, should be investigated relative to IR

use, along with mechanisms for providing sufficient

descriptive information to achieve effective identification

of candidate components. Examination of effective browsing

mechanisms should also be a part of this research.

Careful study should be made of successes in software

reuse, to determine what the causes and effects are. Facets

53

to consider, among others, are: management approaches

(organization for reuse, funding approaches, personnel

communication), life-cycle methodology, standardization of

approaches and language, repository mechanisms, domain

analysis methods, "narrowness" of the application domain,

experience and quality of the technical personnel. Projects

in the U.S. and abroad (especially Britain and Japan) should

be analyzed.

Organized, coordinated research and experimentation

will give far greater leverage than independent efforts with

inevitable overlaps and gaps. The major research projects

reviewed in this report all have strengths and shortcomings.

Hopefully greater coordination can occur in the future,

especially among government-sponsored projects, to the end

of a "whole greater than the sum of the parts". The

technical research is "getting there" rapidly, with

effective solutions to reuse issues being developed. There

are some remaining technical issues, and more breakthroughs

coming. But there is no technical reason for organizations

to wait to implement software reuse. It has proven true in

a number of experiments in reuse that, with a concerted

management effort and "getting everyone on the team",

leverage can be gained quickly from reuse. But it won't

"just happen"--it must occur through determined

organizational effort. An organization already practicing

reuse will be well-positioned to take advantage of more

effective methodologies and tools as they appear.

54

REFERENCES

ANCOAT. 1988. PROCEEDINGS OF THE SIXTH NATIONAL CONFERENCE
ON ADA TECHNOLOGY. Arlington, VA (March).

Anderson, C.M. and D.G. McNicholl. 1985. Reusable Software--
A Mission Critical Case Study. In Grabow 1985a, p. 205.

Asdjodi, M. 1988. KNOWLEDGE-BASED COMPONENT COMPOSITION: AN
APPROACH TO SOFTWARE REUSABILITY. Ph.D. Dissertation, The
University of Alabama in Huntsville, Huntsville, AL.

Barnes, B., T. Durek, J. Gaffney and A. Pyster. 1987. Cost
Models for Software Reuse. In PROCEEDINGS OF THE TENTH
MINNOWBROOK WORKSHOP (1987, SOFTWARE REUSE). Blue Mountain
Lake, NY (July).

Barsotti, G. and M. Wilkinson. 1987. Reuseability--Not an
Isolated Goal. In Yourdon 1987,pp. A1-A14.

Basili, V.R., H.D. Rombach, J. Bailey, A. Delis and F.
Farhat. 1988. Ada Reuse Metrics. In Leslie et al 1988, pp.
11-29.

Bein, J., P. Drew and R. King. 1988. Object-Oriented Data
Base Tools to Support Software Engineering. In Leslie et al
1988, pp. 95-110.

Biggerstaff, T.J. and A.J. Perlis (eds.). 1984. Special
Issue on Software Reusability. IEEE TRANS. ON SOFTWARE
ENGR., vol. SE-bO, no. 5 (Sept.).

Biggerstaff, T. and C. Richter. 1987. Reusability Framework,
Assessment, and Directions. IEEE SOFTWARE, vol. 4, no. 2
(March), pp. 41-49.

Booch, G. 1987. SOFTWARE COMPONENTS WITH ADA. Benjamin
/Cummings, Menlo Park, CA.

Booch, G. and L. Williams (eds.). 1987. PROCEEDINGS OF THE
WORKSHOP ON SOFTWARE REUSE (Rocky Mountain Inst. of Software
Engineering, SEI, MCC, Software Productivity Consortium).
Boulder, Colorado (October).

Bott, M.F. and P.J.L. Wallis. 1988. Ada and Software Re-use.
In Hall 1988a, pp. 177-183.

Brooks, F.P. 1987. No Silver Bullet: Essence and Accidents
of Software Engineering. IEEE COMPUTER, vol. 20, no. 4
(April), pp. 10-19.

Bullard, C.K., D.S. Guindi, W.B. Ligon, W.M. McCracken, S.
Rugaber. 1988. Verification and Validation of Reusable Ada
Components. In Leslie et al 1988, pp. 31-53.

55

Burton, B.A., R.W. Aragon, S.A. Bailey, K.D.Koehler, and
L.A. Mayes. 1987. The Reusable Software Library. In Tracz
1987b, pp. 25-33.

Carstensen, H.B. Jr. 1987. A Real Example of Reusing Ada
Software. In Yourdon 1987, pp. B1-B19.

Cheatham, T.E., Jr. 1984. Reusability Through Program
Transformations. In Biggerstaff and Perlis 1984, pp.589-594.

Chen, Y.F. and C.V. Ramamoorthy. 1986. The C Information
Abstractor. In Davis 1986, pp. 291-298.

Conn, R. 1986. Overview of the DoD Ada Software Repository.
DR. DOBB'S JOURNAL (Feb.), pp. 60-61,86-93.

Davis, A. (session chmn.) 1986. Reusability of Program Code,
session in PROCEEDINGS OF COMPSAC 86, Chicago (October).

Druffel, L. and B. Meyer (eds.). 1988. PROCEEDINGS OF
THE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING,
Singapore (April).

EVB. 1987. Creating Reusable Ada Software. In Yourdon 1987,
pp. E1-E58. (EVB Software Engineering, Inc.)

Fairley, R., S. Pfleeger and B. Springsteen. 1989.
Incentives for Reuse of Ada Components. In notes of Ada
Reuse and Metrics Project Technical Status Review, Fairfax,
VA (Feb.).

Finkelstein, A. 1988. Re-use of Formatted Requirements
Specifications. In Hall 1988a, pp. 186-197.

Fischer, G. 1987. Cognitive View of Reuse and Redesign. In
Tracz 1987b, pp. 60-72.

Frakes, W.B. and B.A. Nejmeh. 1987. Software Reuse Through
Information Retrieval. In Shriver and Sprague 1987, pp. 530-
535.

Fujino, K. 1987. Software Factory Engineering: Today and
Future. In Ramamoorthy and Yeh 1987, pp. 262-270.

Gagliano, R.A., M.D. Fraser, and G.S. Owen. 1988.
Guidelines for Reusable Ada Library Tools. In Leslie et al
1988, pp. 79-90.

Gautier, B. 1988. Book Review: Software Components With
Ada (by Grady Booch). In Hall 1988a, pp. 184-185.

Geary, K. 1988. The Practicalities of Introducing
Large-Scale Software Re-use. In Hall 1988a, pp. 172-176.

56

Goguen, J.A. 1986. Reusing and Interconnecting Software
Components. IEEE COMPUTER, vol. 19, no. 2 (February), pp.
16-28.

Grabow, P.C. (session chmn.) 1985a. Software Reuse: Where
Are We Going? Conference Session, documented in PROCEEDINGS
OF COMPSAC 85, Chicago (October).

Grabow, P.C. 1985b. Software Reuse: Where Are We Going?
In Grabow 1985a, p. 202.

Guerrieri, E. 1988. Searching for Reusable Software
Components with the RAPID Center Library System. In ANCOAT
1988, pp. 395-406.

Hall, P.A.V. 1987a. Software Components and Reuse.
COMPUTER BULLETIN (December), pp. 14-15,20.

Hall, P.A.V. 1987b. Software Components and Reuse--Getting
More Out of Your Code. INFORMATION AND SOFTWARE TECHNOLOGY,
vol. 29, no. I (January), pp. 38-43.

Hall, P.A.V. (guest ed.) 1988a. Software Components and
Re-use: special section of SOFTWARE ENGINEERING JOURNAL,
vol. 3, no. 5 (September).

Hall, P.A.V. 1988b. Software Components and Re-use. In Hall
1988a, p. 171.

Hocking, D.E. 1988. The Next Level of Reuse. In ANCOAT 1988,
pp. 407-410.

Hooper, J.W. 1988. Simulation Model Reuse: Issues and
Approaches. In PROCEEDINGS OF THE 1988 SUMMER COMPUTER
SIMULATION CONFERENCE, Seattle (July), pp. 51-56.

Horowitz, E. and J.B. Munson. 1984. An Expansive View of
Reusable Software. In Biggerstaff and Perlis 1984, pp. 477-
487.

Huang, C. 1985. Reusable Software Implementation
Technology: A Review of Current Practice. In Grabow 1985a,
p. 207.

Hutchinson, J.W. and P.G. Hindley. 1988. A Preliminary
Study of Large-Scale Software Re-use. In Hall 1988a, pp.
208-212.

Jones, A., R.E. Bozeman, and W. McIver. 1988. A
Framework for Library and Configuration Management. In
Leslie et al 1988, pp. 63-78.

57

Jones, T.C. 1984. Reusability in Programming: A Survey of
the State of the Art. In Biggerstaff and Perlis 1984, pp.
488-494.

Kaiser, G.E. and D. Garlan. 1987. Melding Software Systems
from Reusable Building Blocks. In Tracz 1987b, pp. 17-24.

King, R. 1988. Object-Oriented Data Base Modeling and
Software Environments. In Leslie et al 1988, pp. 91-94.

Lanergan, R.G. and C.A. Grasso. 1987. Software Engineering
with Reusable Design and Code. In Biggerstaff and Perlis
1984, pp. 498-501.

Lesslie, P.A., R.O. Chester and M.F. Theofanos. 1988.
GUIDELINES DOCUMENT FOR ADA REUSE AND METRICS (DRAFT).
Martin Marietta Energy Systems, Inc., Oak Ridge, Tennessee
(under contract to U.S. Army AIRMICS).

Lieberherr, K.J. and A.J. Riel. 1988. Demeter: a Case
Study of Software Growth Through Parameterized Classes. In
Druffel and Meyer, 1988, pp. 254-264.

Machida, S. 1985. Approaches to Software Reusability in
Telecommunications Software System. In Grabow 1985a p. 206.

McKay, C.W. 1988. Conceptual and Implementation Models.
In Leslie et al 1988, pp. 111-148.

McNicholl, D.G., C. Palmer, et al. 1986. COMMON ADA MISSILE
PACKAGES (CAMP). Vol. I: Overview and Commonality Study
Results. AFATL-TR-85-93. McDonnell Douglas, St. Louis, MO.

Meyer, B. 1987. Reusability: The Case for Object-Oriented
Design. IEEE SOFTWARE, vol. 4, no. 2 (March), pp. 50-64.

Mittermeir, R.T. and W. Rossak. 1987. Software Bases and
Software Archives: Alternatives to Support Software Reuse.
In Ramamoorthy and Yeh 1987, pp. 21-28.

Murine, G.E. 1987. Recent Japanese Advances in Reusability
and Maintainability. In Yourdon 1987, pp. I1-I15.

Neighbors, J.M. 1984. The Draco Approach to Constructing
Software from Reusable Components. In Biggerstaff and Perlis
1984, pp. 564-574.

Notkin, D. and W.G. Griswold. 1988. Extension and Software
Development. In Druffel and Meyer 1988, pp. 274-283.

Onuegbe, E.O. 1987. Software Classification as an Aid to
Reuse: Initial Use as Part of a Rapid Prototyping System. In
Shriver and Sprague 1987, pp. 521-529.

58

Prieto-Diaz, R. 1987. Domain Analysis for Reusability. In
PROCEEDINGS OF COMPSAC 87, Tokyo (October), pp. 23-29.

Prieto-Diaz, R. and P. Freeman. 1987. Classifying Software
for Reusability. IEEE SOFTWARE, vl. 4, no. 1(Jan.),pp.6-16.

Pyster, A. and B. Barnes. 1987. THE SOFTWARE PRODUCTIVITY
CONSORTIUM REUSE PROGRAM. SPC-TN-87-016, December 1987;
Software Productivity Consortium, Reston, VA.

Ramamoorthy, C.V., V. Garg, and A. Prakash. 1986. Support
for Reusability in Genesis. In Davis 1986, pp. 299-305.

Ramamoorthy, C.V. and R.T. Yeh (eds.) 1987. PROCEEDINGS OF
THE 1987 FALL JOINT COMPUTER CONFERENCE, Dallas (October).

Rogerson, A.M. and S.C. Bailin. 1987. Software Reusability
Environment Prototype: Experimental Approach. In PROCEEDINGS
OF THE TENTH MINNOWBROOK WORKSHOP (1987, SOFTWARE REUSE).
Blue Mountain Lake, NY (July).

Sayani, H. 1987. Applications in Reverse Software
Engineering. In Yourdon 1987, pp. LI-LI5.

Shriver, B.D. and R.H. Sprague, Jr. (eds.). 1987.
PROCEEDINGS OF THE TWENTIETH HAWAII INTERNATIONAL CONFERENCE
ON SYSTEM SCIENCES, Kailua-Kona, Hawaii (Jan.).

Smith, S.R. 1989. AN ADVANCED FULL-TEXT INFORMATION
RETRIEVAL SYSTEM. Ph.D. Dissertation, The University of
Alabama in Huntsville, HuntsVille, AL.

SofTech. 1985. ISEC REUSABIITY GUIDELINES, December 1985.
SofTech, Inc., Waltham, MA.

St. Dennis, R.J. 1987. Reusable Ada Software Guidelines. In
Shriver and Sprague 1987, pp. 513-520.

Standish, T.A. 1984. An Essay on Software Reuse. In
Biggerstaff and Perlis 1984, pp. 494-497.

Tarumi, H., K. Agusa, and Y. Ohno. 1988. A
Programming Environment Supporting Reuse of Object-Oriented
Software. In Druffel and Meyer 1988, pp. 265-273.

Tracz, W. 1987a. RECIPE: A Reusable Software Paradigm. In
Shriver and Sprague 1987, pp. 546-555.

Tracz, W. (ed.). 1987b. Special Edition, Making Reuse a
Reality, IEEE SOFTWARE, vol. 4, no. 4 (July).

59

Utter, D.F. 1985. Reusable Software Requirements
Documents. In Grabow 1985a, pp. 204.

Wood, M. and I. Sommerville. 1988. An Information
Retrieval System for Software Components. In Hall 1988a,
pp. 198-207.

Wong, W. 1986. A Management Overview of Software Reuse. NBS,
Publ. 500-142. Washington, DC.

Yamamoto, S. and S. Isoda. 1986. SOFTDA--A Reuse-Oriented
Software Design System. In Davis 1986, pp. 284-290.

Yeh. R.T. and T.A. Welch. 1987. Software Evolution: Forging
a Paradigm. In Ramamoorthy and Yeh 1987, pp. 10-12.

Yourdon, E. (ed.). 1987. PROCEEDINGS OF THE CONFERENCE ON
SOFTWARE REUSEABILITY AND MAINTAINABILITY (The National
Institute for Software Quality and Productivity, Inc.).
Tysons, Corner, VA (March).

60

